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Density currents in a rotating fluid are produced by releasing a volume of buoyant 
fluid from a lock at one end of a long rotating channel. Coriolis forces hold the current 
against one wall. It is observed that the velocity and depth of the nose decrease 
exponentially in time, implying that the nose can effectively come to a halt a t  a finite 
distance from the lock. In  reality though, the flow regime eventually changes and 
a viscous wedge-shaped intrusion continues. The high-Reynolds-number currents 
contain three-dimensional turbulence a short distance behind the nose, but the 
influence of rotation causes this to become quasi-two-dimensional further upstream. 
The intrusion and turbulent motions represent a forcing to the lower layer that  
produces vortex and wave-like motions which penetrate deep into the lower-layer 
fluid. It is shown that the exponential decay can be attributed to  radiation of 
momentum by these inertial waves. 

The width 1 of the turbulent current varies with distance behind the nose, from 
0.6 times the local time-dependent deformation radius a t  the ‘head’ to 1 z R, far 
upstream, where R, is the initial deformation radius in the lock. The nose of the 
b o d d a r y  current is unstable, with billows appearing near the tip of the intruding 
nose and leading to an intermittent breakup of the ‘head’ structure and oscillations 
of the nose velocity. These oscillations are rapid, often having frequencies much 
greater than f (where f = 2 0  is the Coriolis parameter), and, along with the 
production of the turbulence that is so characteristic of the currents, are attributed 
to a Kelvin-Helmholtz instability. Rotationally dominated baroclinic waves appear 
only a very large distance behind the nose. 

1. Introduction 
When buoyant fluid is released in a rotating system near a vertical wall, Coriolis 

forces constrain the density-driven flow to be along the wall. The importance of side 
boundaries in removing the constraints of rotation upon the spreading of fluid as i t  
colla.pses under gravity, and the consequent formation of a coastal jet, appears to 
have been first discussed by Gill (1976). I n  this vein, Wadhams, Linden & Gill (1979) 
proposed that the presence of the east coast of Greenland caused less-dense water 
from the surface of the Norwegian Sea to flow south as the East Greenland current. 
Such boundary currents are an important feature in coastal oceanography, and 
several aspects of them have recently been studied. 

In experiments with a two-layer density-driven flow that initially formed an 
axisymmetric current around a vertical cylindrical wall, Griffiths & Linden (1981, 

t Present address: Research School of Earth Sciences, The Australian National University, P.O. 
Box 4, Canberra 2600, Australia. 
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1982) investigated the stability of such a boundary current to rotationally dominatedt 
waves and qualitatively described the way in which instability leads to a broader 
current containing rotationally dominated turbulence. A theoretical treatment of the 
linear stability problem is difficult if the influence of the sharp front at the edge of 
the boundary current is to be included, though Killworth & Stern (1982) discussed 
a hydrostatic model in which only one layer of fluid is dynamically active. Stern (1980) 
also developed a similarity solution to the inviscid long-wave equations describing 
a laminar current allowing only slow variation of width or velocity along the wall 
and flow over a very deep and passive ambient layer, and discussed the nonlinear 
stability of this solution. He suggested that, for the unsteady case in which a current 
is preceded by an intruding nose, the solution might be valid far upstream of (behind) 
the intruding nose. Though only valid in the limit of slow streamwise variations, the 
solution would then indicate that the nose of an intruding layer could either steepen 
into an internal bore, for which the fluid velocity behind the nose is greater than the 
velocity of the nose, or form into an ever thinning wedge shape that would be limited 
only by viscous effects. The similarity solution was extended to the case with two 
layers of finite depth and arbitrary potential vorticities by Stern, Whitehead & Hua 
(1982) and predicts the velocity profile and width far upstream of the nose in terms 
of the depth h, (far upstream) at  the wall. With the assumption that the flow near 
the wall is steady and energy conserving there follows the result that the current width 
is always in the range 0.41-0.52 times the deformation radius (g’h,);/f, where 
g’ = gAp/p is the reduced gravity and f = 252 is the Coriolis parameter. More 
significantly though, Stern et al. find that the width 1 of a steady laminar current 
should satisfy the inequality 

where uN is the propagation velocity of the nose, irrespective of the amount of 
dissipation or mixing. 

Observations of the propagation of an intruding nose produced by a slow 
continuous supply of buoyant fluid from a confined source on a wall (Stern 1980; 
Griffiths & Linden 1981) indicated that the bore solution was realized and that 
rotationally dominated instabilities, possibly related to those predicted by Stern, 
appeared at the nose and along the trailing flow. The flow remained laminar, but only 
small Reynolds numbers (< lo2) were studied. More interesting in the geophysical 
context are experiments reported by Stern et al. (1982), which prompted the work 
described in this paper. High Reynoldsnumbers and more-controlled initial conditions 
were achieved by releasing a fixed volume of buoyant fluid, possessing uniform 
potential vorticity, from a lock at  one end of a straight channel. Without rotation 
the resulting flow would correspond to surface gravity currents of the type described 
for instance in the review by Simpson (1982). When the system is rotating, however, 
Coriolis forces hold the current against one wall, producing a three-dimensional flow 
and altering interfacial mixing. For Reynolds numbers of order lo3 and greater, the 
outer edge of the current was reported to be turbulent, and hence definition of a 
characteristic, dynamically significant width for comparison with the similarity 
solution was somewhat ambiguous. Stern et al. chose to measure the distance from 
the wall to a line of maximum shear, inside which the flow was supposed to be 
quasisteady, laminar and unidirectional. They found this width to be O.42(g‘hu);/f, 

t The term ‘rotationally dominated’ is used here to describe flow perturbations for which the 
Rossby number is small, but does not restrict attention to geostrophic flow. 
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in excellent agreement with that predicted (although the measured width was larger 
when the ratio of current width to depth was less that  a value of order unity). They 
also noticed that the velocity of the nose decreased with time and in some experiments 
the nose even came to rest. It was suggested that this stagnation of the nose might 
be due to a blocking effect of an unstable wave. 

More-detailed observations and measurements of the structure and dynamics of 
similar gravity currents with high Reynolds numbers are reported here. A qualitative 
description of the principal features of the flow is given in $3. The flow in a short 
region near the nose (discussed in $4), though itself strongly influenced by the 
background rotation, develops billows whose wavelength, maximum amplitude and 
growth rate all indicate that they are the result of a Kelvin-Helmholtz instability 
that is little influenced by rotation. The instability is therefore similar to  that which 
occurs on non-rotating gravity currents and is not the result of rotationally 
dominated, hydrostatic instabilities discussed by Stern (1980). The nose velocity is 
found to decrease as the nose moves along the channel, as was noticed by Stern et 
al., but we demonstrate in $4 that this decrease is exponential in time. The velocity 
decay-time scales with the rotation rate D and a global Froude number based on lock 
parameters. The billows and three-dimensional turbulence produced in both fluids 
near the nose are constantly left behind by the propagating nose to  form a more slowly 
moving turbulent current in which the eddy motions become quasi- two-dimensional 
under the influence of the background rotation. Measurements of the profiles of mean 
streamwise velocity at locations upstream of the nose are discussed in $5 and permit 
us to compare the total width of the turbulent current (revealed by dye) to the width 
defined on the basis of maximum velocity or maximum shear. I n  $6 we describe 
observations of vortex and wavelike motions induced in the deep lower layer by the 
passage of the boundary current, and in $ 7  we develop arguments that support the 
idea that the exponential decay of the nose velocity is a consequence of momentum 
loss by inertial wave radiation. This important aspect is further supported by the 
behaviour of a current running over a shallow layer, as presented in $8. The results 
are summarized in $9, which also contain further remarks on vortex formation 
beneath the current and on the growth of rotationally dominated waves far upstream. 

2. Realization of the ' dambreak' experiments 
The density currents described here were produced by removing a vertical barrier 

that  initially retained a volume of fresh water which lay at one end of a channel and 
floated on a much larger volume of dilute salt solution. The channel was 200 cm long, 
30 cm wide and was carefully levelled about the vertical axis of rotation of a direct-drive 
turntable. For most experiments the total depth D of fluid in the channel was 50 cm 
(+_ 1 em). However, in a small number of experiments D = 10 ern was used. 

The fresh water that  was destined to form the gravity current was contained in 
one of the three different lock geometries shown in figure 1. The different geometries, 
while being strongly constrained by practicalities in the laboratory, were designed 
to give different volumes of fresh water and different ratios of lock width to lock 
length. Lock A has a horizontal area A ,  = 600 em, B of 500 em2 and C of 150 cm2, 
while A and B have width-to-length ratios of 4 and 4 respectively. Depths of the fresh 
water covered the range 3 < H ,  < 12 cm and the removable barrier (0.2 cm thick) 
extended 1G15 cm below the surface. The density difference between the layers was 
found by measuring the specific gravity of each fluid to  0.0002 with a hydrometer, 
the difference in density being 0.2-1.5 % of that of fresh water po with an uncertainty 
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FIGURE 1. The three lock geometries in plan. In each case the barrier (broken line) extends 
15 cm below the free surface. Direction of rotation is anticlockwise. 

of *0.05% of po. Thus the reduced gravity g’ = gAp/po lay in the range 
2 < g’ d 15 cm sP2. The direction of rotation was always anticlockwise so that the 
current always lay against the right-hand wall of the channel when looking in the 
direction of propagation. 

The experiments were performed as follows. Once the deep layer of salt solution 
had spun up to the desired rotation rate (0.1 d f Q 2.1 rad s-l), fresh water was 
slowly placed on the free surface inside the lock using a porous-foam float. Very little 
mixing occurred during filling. Both fluids had been left to  approach room temperature, 
and their temperatures differed by less than 0.1 O C .  When the fresh water reached 
the desired depth Ho the filling mechanism was removed and the system left (for about 
one hour) to return to solid-body rotation. It was found that a covering lid was 
unnecessary as any motions induced by evaporative convection and surface wind 
stress were not detectable in long-time-exposure photographs of particle motions, and 
were therefore less than & of the speed of the nose. 

Once the two-layer system was in solid-body rotation the barrier was smoothly 
withdrawn, leaving the dyed fresh water to  spread along the free surface. At 
approximately the same time an electronic timing system was started. This triggered 
one or more cameras a t  a preset accurate time interval so that we obtained a regular 
sequence of photographs of the flow. For some experiments two cameras were 
mounted on a moving counter-balanced carriage in such a way that one photographed 
the flow from above and the other recorded it from the side, simultaneously. These 
gave clear close-up views with little distortion. I n  other runs, an inclined mirror was 
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placed alongside the channel, and a single camera mounted in the rotating frame far 
above the turntable recorded both plan and side views of the full length of the gravity 
current. The flow was made visible by adding food dye, fluorescent dye or neutrally 
buoyant polystyrene particles to the fluid before beginning the experiment. The 
particles were illuminated by a horizontal sheet of light 2-3 cm thick and positioned 
a t  selected depths. Time-exposure photographs of particles were designed to reveal, 
in particular, motions in the deep lower layer. 

All measurements were taken from the photographs: the nose position was 
obtained from both side and plan views and the current width and depth on the wall 
(also as functions of time) were taken at several positions behind the nose. The depths 
and widths measured here were simply those indicated by the visible dye. These were 
well-defined quantities everywhere, although the presence of convolutions on the 
outer edge of the flow and on the density interface a t  the wall made mean 
measurements in a short region just behind the nose unreliable and ambiguous. 
Mixing across the density interface in this same region accentuated the difficulty of 
measuring the depth of the flow. Independent measurements of the current width 
and structure upstream of the nose were obtained in a number of runs by injecting 
neutrally buoyant dye into the flow from an array of fine capillary tubes which were 
arranged with their ends lying on a horizontal line perpendicular to the wall and 
0.5 cm below the surface. When the supply of dye was switched on and off small 
(approximately0.5 cm) blobs of dye were formed and these were advected by the flow. 
The displacements (of the order of 5 cm) of many individual blobs measured over a 
short time interval gave profiles of the downstream velocity (at a fixed distance 
downstream from the lock) as a function of the time elapsed after the nose passed. 
The shape and behaviour of these profiles were reproducible in the sense that the 
measured velocities varied only slowly and smoothly in time and space. 

3. Qualitative observations 
Before discussing the results in detail, we describe the general features of the flow, 

many of which have not previously been reported. Photographs of both plan and side 
views of the nose of dyed intrusions a t  several times after the lock barrier was 
withdrawn are shown in figure 2 for both wide and narrow locks, while a photograph 
of the full length of a current after the nose had travelled 106 cm from the lock is 
shown in figure 3. Photographs such as that in figure 3 reveal no significant qualitative 
difference between the boundary currents studied here and those produced by Stern 
et al. (1982) with similar density differences and angular velocities, but the photograph 
is shown here in order to stress two important features not previously acknowledged : 
extensive and vigorous vertical mixing takes place beneath a large length of the 
current; and the outer edge of the dyed fresh water represents a well-defined and 
slowly varying width for the turbulent flow. 

Immediately after the barrier is removed the less-dense (dyed) fluid collapses 
outward over practically the whole lock width. However, before it can move a 
distance of one Rossby radius i t  is deflected toward the right-hand wall (rotation is 
anticlockwise) by Coriolis forces, and, if the lock is wide compared with the 
deformation radius R, = (g’H,)a/f, a strong jetlike stream directed toward the wall 
develops along the front. An associated Coriolis force directed upstream then prevents 
further motion along the channel everywhere except in the vicinity of the wall. The 
distance through which the upper layer collapses was found to be close to one 
deformation radius R, and the time taken to reach geostrophic balance was of order 
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(ii) 

FIQURE 2(a ) .  For caption see p. 365. 

f l. At the wall there can be no upstream component of the Coriolis force, and a 
gravity current begins to form as shown in figure 2(a ) .  By this stage billows along 
the whole of the edge of the flow have reached large amplitude and begin to cause 
mixing between the fluids. However, at the edge of the lock the billows (shown in 
figure 2a)  rapidly dissipate and are not replaced, so that the resulting mixing there 
is limited. Apart from the transient billows, mixing during the early development of 
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(ii) 

FIGURE 2 ( b ) .  For caption see p. 365. 

the flow in the case of ‘wide ’ locks is largely due to the collision of the frontal stream 
with the wall, which causes the large vertical excursions of dyed fluid seen in the side 
view on figure 2(a) ,  while the wake of the barrier as i t  is withdrawn produces some 
small-scale turbulence for all lock widths. These processes too occur only during a 
very short initial period before the front of the gravity current is fully formed, but 
might have some influence upon the initial speed of the nose. 

Once the boundary current is well developed, the flow has many of the qualitative 
features predicted by a linear (small depth variation) and long-wave analysis of the 
problem (Gill 1976). In particular there is a jet-stream along the left-hand wall within 
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(ii) 

FIGURE 2 ( c ) .  For caption see facing page. 

the lock, which then crosses to the right-hand wall near the original barrier position. 
The resulting flow out of the lock must be hydraulically controlled, with the flow 
velocity becoming critical at some point near the barrier position. Nonlinear and 
nonhydrostatic features are also apparent, the current being led by a bulbous ‘head’ 
structure (see the photographs in figures 26, d )  which is similar to that observed in 
the non-rotating case (Britter & Simpson 1978; Simpson & Britter 1979). As on the 
non-rotating gravity currents, small billows appear on the leading edge of the nose 
and grow as they move away from the nose. These billows have their axes aligned 
roughly across the channel and on the density interface. They break and the resulting 
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(ii) 

FIGURE 2. Photographs of the nose region of dyed gravity currents in (i) plan and (ii) side view 
for stages in two different experiments: (a) and (b) show the same current, prodiiced using lock A, 
at  times (a) 20 s and (b) 56 s after the barrier was removed ( f =  0.276 s-l, (g’H,)i = 3.5 cm s-l, 
Reynolds number Re, = 800); (c) and (d )  show a current produced using lock B a t  times (c) 5.5 s 
and (d )  13.5 s after the flow commenced (f = 0.495 s-l, (g’H,)k = 9.9 cm s-l, Re, = 1900). The grid 
scales on the top and side of the channel wall are 10 cm but photographic enlargements for top 
and side views are different as these are taken (simultaneously) by different cameras. The bottom 
of the channel is well below the area photographed. Rotation is anticlockwise. 
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turbulence is left behind on the trailing flow, Although eddy velocities tend to  
dissipate with distance from the nose, plan views show that eddies disturb the full 
length of the outer edge of the gravity current (as was stressed by Stern et al. 1982). 
Our observations, using both streak photographs and dye, on the other hand, show 
that eddy motions are also vigorous near the wall. For large Reynolds numbers 
(figure 2 d )  the eddies cause large vertical excursions of the density interface some 
distance behind the nose, and our impression is that  there is much more vertical 
mixing than in the equivalent non-rotating flow, with wisps of dyed upper-layer fluid 
being carried downward into the lower layer within the vortices. Vortex motions a 
short distance behind the head have their axes partially aligned with the vertical 
(though the billows were initially nearly horizontal) and cause the fluid to resist the 
restoring force of gravity. Such vigorous mixing and delayed collapse of the 
turbulence under gravity often smears out the density (or dye) distribution so that 
no clear interface can be seen anywhere upstream. Another important point is that 
cyclonic vortices can be seen to extend into the lower layer. The turbulent motions 
also appear to  become increasingly two-dimensional with distance upstream, giving 
rise to predominantly horizontal eddy motions. 

The flow very close to the nose of the current is not a quasi-steady feature. In  most 
runs, particularly for larger Reynolds numbers, growing billows periodically appear 
(in both plan and side views) on the leading edge of the head, and the head (or first 
large billow) breaks up to  be replaced by another which is smaller in depth and width. 
A sequence of such breakdowns is often observed. Unsteadiness of this form does not 
appear to occur for non-rotating currents. 

As the depth of the current decreases with time, so does the propagation speed of 
the nose. I n  a few experiments the nose even appeared to stagnate before reaching 
the end of the channel. This phenomenon was noted by Stern et al., who also reported 
an associated separation of the flow from the wall. I n  our experiments no separation 
occurs. Instead, if the nose depth and velocity become very small, the head structure, 
billows and turbulence all disappear in a fairly sudden transition and the nose 
becomes a shallow, narrow viscous intrusion which creeps very slowly along the wall. 
We have not studied this viscous regime, and no measurements were taken anywhere 
in the current after the transition of the nose. 

Returning attention to the flow in the lock, we noticed that the rapid motion of 
the fresh water away from the left-hand wall during the early stages of formation 
of the gravity current initiated a Kelvin wave of elevation on the interface, as 
predicted by Gill (1976). The wave was seen to travel around the perimeter of the 
lock (in the anticlockwise direction) and then along the current on the right-hand 
wall. This is the rotating counterpart to the two-dimensional expansion wave 
observed in the non-rotating situation, in which case i t  reflects from the end of the 
lock and overtakes the nose of the gravity current about ten lock lengths downstream, 
affecting the subsequent propagation speed of the nose (Rottman & Simpson 1983). 
I n  the rotating case, we have only investigated the behaviour of the flow within three 
lock lengths of the barrier when using the longest lock, and within thirteen lock 
lengths when using the shortest lock. At the same time, the Kelvin wave must 
traverse an extra distance corresponding to the lock width. For runs in which the 
wave was visible we observed that i t  did not overtake the nose until long after the 
nose reflected around the far end of the channel. However, the wave was not always 
visible and i t  is probable that the expansion eventually overtook the nose for those 
currents that  almost stagnated within the length of the channel. 

Associated with the passage around the lock of the Kelvin wave is the formation 
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of an anticyclonic (clockwise) vortex in the upper-layer fluid within the lock. This 
vortex motion was very feeble when the deformation radius R, was larger than the 
smallest horizontal dimension of the lock, but was strong when R, was small. A 
doming of the density interface developed and the vortex effectively trapped much 
of the remaining fresh water. Only a small continuous flux of fluid was then released 
to follow the initial boundary current. However, the trapping of fluid cannot influence 
the propagation of the nose until after the Kelvin expansion wave has overtaken it, 
and there is no evidence of any dependence of the nose speed upon the existence of 
the vortex (see $4). 

Finally, at a time corresponding to  about ten rotation periods after initiation of 
the flow, unstable long waves became visible on the boundary current near the lock 
(see figure 19d). This was usually long after the nose had reached the far end of the 
channel, and therefore long after all measurements had been completed. At first only 
one stationary growing wave could be seen but, later, other waves became visible 
further downstream, with their amplitude decreasing with distance from the lock and 
a wavelength which was consistlent with h x 6(g’h,)i/f, where h, is the local depth a t  
the wall. If the system was left until these waves reached very large amplitude (by 
which time the nose had come back to the lock), the waves broke toward their 
upstream side and appeared identical with those studied by Griffiths & Linden (1981, 
1982). An anticyclonic rotor developed within the boundary current a t  each wave 
crest, along with a cyclonic eddy in the ambient fluid, and extensive horizontal 
spreading of the buoyant fluid followed. Given the large time- and lengthscales these 
are clearly rotationally dominated, and possibly quasi-geostrophic, waves. 

4. Propagation of the nose 
The evolution of the flow will first be discussed in terms of the initial conditions 

and later we will consider local properties of the boundary current. On figure 4 are 
shown original data for the position x - x, of the nose, where x is measured from the 
end of the channel and xo is the lock length, as a function of time for a sample of 
experiments using the 20 cm lock length. The position is normalized by xo and the 
time by x,/(g’H,)i. It is clear that the nose velocity decreases with time in all cases, 
a t  least after a short initial period. However, all attempts to  describe the trajectory 
in terms of one or two simple and common power-law regimes were unsatisfactory. 
These plots also mask a great deal of useful information. 

4.1. Exponential time decay 
Data such as those shown on figure 4 were used to  calculate the displacement of the 
nose and hence its velocity uN over each time interval. The results, plotted against 
the distance from the lock barrier, for a sample of experiments are shown on figure 
5 .  The runs shown are typical in that they are chosen simply because they have a 
similar range of abscissa values for each of the relatively small (figure 5 a )  and 
relatively large (figure 5 b )  variation of nose velocity. The distance x -  x, from the lock 
barrier is this time non-dimensionalized by the initial deformation radius 
R, = (g’H,,);/f, giving X = (z - x,)/R,, while the nose velocity uN is normalized by 
the velocity (g’&,$, giving I; = uN/(g’Ho)i. Although this procedure introduces into 
each data point the errors involved in reading the nose position on the photographic 
record, it contributes a random uncertainty of only a few per cent. It can now be 
seen that in each run the velocity quickly increases to a maximum value arid then 
decreases linearly with distance travelled. The straight lines are fitted by a regression 
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FIGURE 4. Data from a sample of four runs showing the position of the nose relative to the lock 
barrier (in lock lengths zo) as a function of a dimensionless time after the beginning of the flow 
at to .  These runs are with lock A (z,, = 20 cm), Coriolis parametersf = 1.03 s-l (a), 0.222 s-l (A), 
1.01 s-' ( x ), and 0.517 s- l (+) ,  depths H,  = 9.8,3.8,10 and 8.0 cm and reduced gravities g' = 0.98, 
6.7, 5.8 and 0.98 ern s - ~ ,  respectively. For comparison, the straight line represents a constant 
velocity u = 0.8(g'H0):. 

analysis to  all points beyond the velocity maximum. Oscillations in the nose velocity, 
with amplitudes up to  10 % of U ,  are also resolved, and these will be discussed in 54.5. 
For the moment, however, we consider only a smoothed velocity variation, which 
in all runs is well described by a linear relation in X .  

For distances beyond the velocity maximum we write 

u = uo-x/r, ( 1 )  

where Uo is the intercept a t  X = 0, and r is a constant for each run. Since the velocity 
is simply U = dX/dT, where T = f ( t  - t o )  is the dimensionless time elapsed since the 
flow began a t  ( t  = t o ,  X = 0},  the solution to  (1) is 

U = Uoe-T/7. (3) 

Thus r becomes the dimensionless timescale for an exponential decay of the nose 
velocity. If the empirical relation (1) and its solution (3) were to  hold up to large times, 
then the nose would asymptotically approach the limiting distance X ,  = Uo7 and 
stagnate. 

On figure 6, the nose-velocity calculations that were shown on figure 5 are replotted 
on a logarithmic scale as a function of the dimensionless time T .  The time origin to 
was in each case found by linearly extrapolating backwards to x = xo from the first 
three measurements of x(t) .  However, the correction to the timescale was always very 
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All have Re, > lo3 and E,  < 
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Symbols are as on figures 5(a) and ( b )  for (a )  and ( b )  respectively. Note the different velocity scales 
on (a)  and ( b ) .  
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FIGURE 7.  The trajectory X ( T )  for the nose in those runs shown on figures 5 and 6. Straight lines 
are relation (2) fitted to the points, which are calculated using an empirical value of X, obtained 
from the data on figures 5 and 6. Symbols on ( a )  and ( b )  are as on figures 5(a )  and ( b )  respectively. 
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small and less than one time interval. Again the straight lines are fitted by a regression 
analysis to all points beyond the velocity maximum and show that the exponential 
(3) gives in every case a good description of the evolution. The velocity sometimes 
decreases to only 20 % of its maximum value before the nose reaches the end of the 
channel or passes into the viscous regime mentioned in $3. From the data we also 
find that the initial acceleration phase always takes a time t, x 5(H0/g’)i, or in 
dimensionless form ft, x 5(fLH,/g’)i = 5H,/R,. 

Two independent estimates of the values of U,  and 7 were obtained from the fitting 
of ( 1 )  to U ( X )  and (3) to  U(T) .  The two estimates of the decay time lay within 5 yo of 
each other for most experiments (and always within 10 %), while the estimates of the 
velocity intercept U, were always within 7 yo of each other. Therefore the mean of 
the two values of each parameter was used to  calculate the maximum travel distance 
X ,  = Uo7.  Then, in order to show that (2) gives a good description of the nose 
trajectories (see figure 4), the parameter (X, - X ) / X ,  is plotted as a function of time. 
Figure 7 shows such plots for the same runs that are shown on figures 5 and 6, along 
with the straight lines of best fit. The only significant deviation from the lines again 
occurs in the initial accelerating phase and the coefficient of regression in over 90 % 
of the experiments exceeds 0.9990. We are therefore confident that the evolution of 
the flow under all conditions used is well described by an exponential decay law. 

4.2. Scaling of the decay time 

The velocity intercept U, is of order unity for all the experiments, though there 
is a scatter through the range 0.7-1.3. I n  the search for the cause of the velocity 
variation between runs we found that U, is not reproducible to better than 10 % when 
a given run is repeated and that there is no clear dependence upon any extensive 
parameter of the system (R,/H,, R,/At, R,/lock width, H,/D, Reynolds number 
Re, = (g’H,)bH,/u and Ekman number u/fH:). On figure 8 the velocity U, (obtained 
with all three lock geometries) is plotted as a function of the initial Reynolds number 
- Re,. No Reynolds-number dependence emerges, and the mean value is 
U, = 0.93 & 0.14. This lack of dependence on Reynolds number is consistent with the 
same conclusion for non-rotating gravity currents, but contradicts the relatively 
sparse data of Stern et al. The scatter is most likely caused by the complex interaction 
of the frontal stream with the wall, and possibly also the unpredictable mixing, during 
the early stages of development of the flow. 

Of greater interest are the decay timescale 7 and the asymptote X,. On figure 
9 the decay time for most runs is plotted as a function of the ratio of the horizontal 
dimensions of the lock (defined in terms of its horizontal area A,) to the deformation 
radius R,. A very similar graph is obtained if 7 is replaced by X,. Data obtained 
with the three different locks are distinguished, but there appears to be no dependence 
upon the geometry. No other parameter provides a satisfactory collapse of the data 
and there is a large separation between the data from the different locks if the 
lengthscale At is replaced by either the lock width or length. The parameter At/R, 
can be thought of as a Froude number since i t  is the ratio of the velocity scale fAi, 
the velocity that fluid acquires in moving a distance At to escape from the lock, to 
the wave speed (g‘H,)i appropriate for the nose. I n  other words, i t  is the square root 
of the ratio of the initial kinetic energy ( x pA, H,S22A,) of the buoyant fluid due to 
the rotation of the system to the available potential energy ( x pA,g’Ht). Hence the 
value of Ai/R, indicates the influence of rotation upon the hydraulic control of the 
flow leaving the lock. An alternative view of the parameter is simply that, since the 
current width scales with R, (see $ 5 )  and the current, depth is proportional to H, (see 
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§4.3), then A,/R, is the length of a boundary current containing the original volume 
A ,  H, of buoyant fluid. The dimensionless length is then A,/R& upon which should 
depend both X, and 7. We therefore define the Froude number Fr = fAb/(g‘H,)i .  

Returning to figure 9, the straight line drawn has a slope of $ and gives a satisfactory 
description of the data (a regression analysis actually gives a slope of 0.69). However, 
only results from experiments that have small Ekman numbers have been included 
on figure 9. The influence of viscosity through Ekman dissipation can be brought out 
by using the trend in figure 9 and plotting, this time for all data, the exponential 
decay time 7 normalized by Frg against the Ekman number E, = v1fHi.t The result 
is shown on figure lO(a) ,  where we see that the decay time is reduced by Ekman 
friction (not by low-Reynolds-number effects) when E,  > lo+. At these conditions 
the spin-down timescale E;i becomes as small as the decay time 7 and the initial 
potential vorticity is dissipated as i t  is advected downstream. At smaller Ekman 
numbers the data show no dependence on E,  and the magnitude of the scatter is only 
twice that expected due to an estimated 10 yo uncertainty in calculating 7. Figure 10 ( b )  
shows the corresponding results for the asymptotic distance XM normalized by F d .  
Note that it was only at E,  > lop3, where X, is smaller, that  the dimensional distance 
X, = R,XM lay within the length of the channel and an effectively stagnant nose 
could be observed. The mean values of 7 and XM at small Ekman numbers are shown 
by the straight lines and give 

E, < 10-3, 
7 = (25f5)Fr$, 

XM = (22+4) Frg 
(4) 

or in dimensional form xM M [(g’H,)a Ao / f ] i  and 7f-’ M (A,/g’H$)i. These data show 
no influence of the ratio of lock width to deformation radius or of the formation 
of a vortex in the lock, nor is there any detectable correlation with the Reynolds 
number or the aspect ratio R,/H, .  

4.3. Current depth at the wall 

On the photographs in figures 2 and 3 it can be seen that the depth h, of the ‘head’ 
is the most clearly defined depth that is characteristic of the flow, and as such i t  gives 
the best available measure of the time evolution of the current. A spatially averaged 
(but time-dependent) upstream depth h, on the wall was also estimated a t  each time 
interval, and this is generally about 20 yo smaller than that of the head, but the values 
are less reliable due to large distortions of the interface and to mixing. (The definition 
of these two depths is included on figure 16, which is a diagrammatic representation 
of the flow.) 

On figure 11 the depth of the head for a sample of experiments is normalized by 
the initial depth H ,  of fresh water in the lock and plotted as a function of the 
dimensionless distance from the lock. The depth a t  the position a t  which a clearly 
defined heat structure first develops is about &H,. It then proceeds to decrease with 
time in a roughly exponential manner. All other experiments show a similar 
behaviour, though the measurements of hN are sometimes distorted by the tendency 
for the large billow a t  the rear of the head to form a vortex aligned with the vertical 
axis of rotation and which tends to  carry dyed fluid deeper below the surface. 

t The Ekman number is based on the depth H,. This scale is even more important in the rotating 
system than i t  is for non-rotating gravity currents. In both cases it determines the depth of the 
current, but with rotation it also determines the potential vorticity f/H,, which, in the absence 
of mixing and friction, is conserved by fluid columns as they are carried along the current. 
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FIQURE 10. Final collective results for all experiments, showing (a) the pxponential decay time 7 

and (6) the asymptotic travel distance X, = U, 7 ,  both normalized by (&,/&)~ and plotted against 
the Ekman number Eo. Symbols indicate lock geometry as on figure 9 but show no dependence 
on this parameter. Horizontal lines show the mean values that give relations (4);  the broken lines 
have slope - 1. 
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FIGURE 11. The evolution with time of the depth and locally scaled velocity of the nose for several 
runs. The head depth h, is normalized by the initial depth H ,  in the lock (data points joined by 
solid lines) and the nose velocity is scaled with (g’h,)* (points joined by broken lines). Each symbol 
refers to a given experiment. 

The temporal variations of the current depth indicate that the measurement 
technique employed by Stern et al., who averaged all depth measurements taken 
during each run, conceals much of the behaviour of the system. The decrease of h, 
is often steplike, with the steps being due to repeated breakdown of the head, which 
can be correlated with the growth of new billows on the otherwise smooth leading 
edge of the nose. The steps in h, have, a t  least in some cases, the same frequency 
as oscillations of the nose velocity (see figure 6) and these oscillations are discussed 
further in 54.5. 

4.4. Local scaling of nose velocity 
Knowing the time-dependent depth of the boundary current, it is possible to 
investigate the dynamics of the flow near the nose. First, the nose velocity U, can 
be compared a t  each instant in time (see figure 11) with the corresponding local 
velocity scale (g‘h,)i based on the hydrostatic head h, that provides the buoyancy 
force to  push the nose along (Benjamin 1968; Simpson & Britter 1979). We find that, 
while the current depth and nose velocity both decrease exponentially in time, 
uN/(g’h,)* remains constant to within experimental uncertainty throughout each 
experiment. The same is true of the more accurately known quantity uN/(g’hN)J, 
though this sometimes decreases by up to 20 % near the end of runs in which the nose 
velocity become very small. 

The current depth can also be used to define a local Reynolds number Re, = U, hN/v  
which is a more realistic measure of the importance of viscosity than the Reynolds 
number based on H,,. This Reynolds number always begins a t  a value approximately 
&Re, and decreases with time, sometimes by as much as an order of magnitude before 
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FIQURE 12. The velocity of the nose normalized by the time-dependent scale (g’h,)i (where h, is 
the depth far upstream on the wall) plotted against the time average of the local Reynolds number 
for the nose. Each point shows the mean velocity and its standard deviation for one experiment, 
the value being nearly constant with time in each run. The mean over all experiments with 
Re, > lo3 is 1.3k0.2. 
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the nose reaches the end of the channel or becomes a viscous wedge. The latter occurs 
a t  Re, 5 lo2. Figure 12 shows the mean dimensionless velocity - uN/(g’hu)i for each 
experiment as a function of the time-averaged Reynolds number Re,. For runs with 
small values of the Reynolds number there is possibly some dependence on Reynolds 
number of the nose velocity. However, although the final value of Re, in runs with 
Re, < lo3 often lies in the range lO(r200, there is no significant time variation of 
uN/(g’hu)i. For Re, > lo3 the dimensionless velocity shows no dependence upon 
Reynolds number and the mean value (shown by the straight line) is 
uN/(g’hu)b = 1.3k0.2.t A similar invariance is found for the velocity normalized by 
(g’h,);, for which the mean value a t  ReN > lo3 is UN/(g’hN)a = 1.15 f 0.1. We conclude 
that the Reynolds number has little influence on the dynamics of the flow near the 

t The dimensionless velocity of 1.3f0.2 is smaller than the value of 1.6 reported by Stern et 
al. (1982) for their largest values of the Reynolds number Re,, ( x 8 x lo3, noting that their Reynolds 
numbers are incorrect by a factor of ten) because they calculated the velocity using an initial value 
of uN obtained near the beginning of each run, as well as a time-averaged value of h,. Stern et al. 
also predicted a Froude number of 1.54-1.58, but see $7.3. The corresponding Froude number 
for the nose of non-rotating gravity currents on a rigid bottom (at the same fractional depth 
h,/D x 0.050.1)  is measured to be 1.1-1.2 with no slip on the bottom and 1.5-1.7 with slip 
(Simpson 8: Britter 1979). The value appropriate to a free-surface intrusion is likely to be closest 
to that with slip. 

__ 
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FIQURE 13. The head width 1, for each run, normalized by the local time-dependent deformation 
radius (g’hN)i/f ,  as a function of the initial aspect ratio Ro/Ho. Error bars show the standard 
deviation about the mean for many measurements within each run. Straight lines show the mean 
width I ,  = O.G(g‘h,)&/f for R,/H,, > 1 and a fit to data for Ro/Ho < 1. Symbols indicate the lock 
geometry as on figure 9. 

nose just as it does not significantly affect the measured exponential decay timescale 
7, though it may contribute slightly to the scatter of the data on figure 10 due to 
the inclusion of some experiments with low Reynolds numbers. 

4.5.  Width of the nose 

An interesting quantity is the width of the intruding nose. This we define as the 
maximum width (shown on figure 16) of the head a t  times when it is not in the process 
of breaking up. The maximum depth hN occurs a t  the same x-position, and the ratio 
f l N / ( g ’ h N ) i  remains constant with time in each experiment to within 20 yo, with no 
clear systematic variation. 

On the other hand, the value of the dimensionless width is not the same in all 
experiments. On figure 13 the widths f l N / ( g ’ h N ) ’  for all experiments are plotted as 
a function of the aspect ratio R,/H,. The error bars show the standard deviation for 
a large number of individual width measurements taken throughout an experiment, 
and it should be noted that the initial aspect ratio (the square root of the parameter 
g’/f”Ho used by Stern et al.) is being used to give a rough description of the local but 
time-dependent ratio l N / h N .  For ‘wide’ currents (Ro/Ho > 1)  the width of the head 
is a constant fraction (0.6 kO.1) of the local deformation radius. However, it increases 
with decreasing aspect ratio when R, < Ho.  This variation is similar to that found 
by Stern et al. (1982) for an average current width behind the nose. Since larger 
vertical accelerations are likely to occur for smaller aspect ratios, they attributed the 
increase in width to non-hydrostatic effects. However, in geophysics it is the very 
large aspect ratios that are of interest, and under this condition the constant width 
f & / ( g ’ h N ) +  z 0.6 characterizes the intruding nose as well as the trailing current for 
a distance of many nose widths upstream. Note that this width implies that the 
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cross-stream slope of the density interface at the head is much greater than that 
which could be in geostrophic balance with the Coriolis force due to the velocity u,. 

A Rossby number Ro, = uN/f 1, for the motion of the nose can now be evaluated. 
Using the above result for 1, and the velocity U, = i.i5(g’hN)i we have RON x 2.0, a 
value that is independent of time and all external parameters whenever the aspect 
ratio R,/H,, > 1 and the Reynolds number is not too small. Hence for aspect ratios 
greater than unity the nose width can be written as 1, x uN/2f ,  a value equal to the 
maximum possible width for the steady, frictionless limiting bore predicted by Stern 
(1980) and Stern et al. (1982) (see appendix A of Stern et al.). Going a step further, 
the nose velocity U, = l.3(g’hu)iimplies that 1, x 0.65(g’hu)i/f, avalue slightly smaller 
than the predicted maximum width (g’h,)i/f 4 2 .  Hence Stern’s limiting bore appears 
to have been realized, though caution is needed in the numerical comparison because 
the predictions are based on a long-wave (i.e. hydrostatic) approximation while the 
observed ‘ head ’ and large billows beneath the current are produced by non-hydrostatic 
effects (irrespective of the ratio of current width to depth). 

4.6. Instability and velocity oscillations 

Since the oscillations in the absolute velocity U sometimes have amplitudes as great 
as 10 % of U ,  i t  is of interest to discuss their frequency. This is relevant to the nature 
of the billows that have such a large effect upon both the structure and, as is argued 
in $8, the dynamics of the flow. However, we have not studied in detail the stability 
of the flow a t  the nose, but briefly present here data that are readily obtained from 
the photographs and velocity measurements. 

The similar appearance of side views of rotating and non-rotating gravity currents 
suggests that we compare the growth rates and dimensions of the billows on each, 
while keeping in mind that the basic flow is different in a t  least some respects. For 
the non-rotating case, Britter & Simpson (1978) report that the time taken for each 
billow to grow to its maximum amplitude scales with the parameter AU/g‘,  where 
AU is the velocity difference that gives rise to the billow. At large Reynolds numbers 
they find g’t*/AU x 3. For the rotating case, direct observations of the flow and 
measurements of the nose depth suggest that each breakup of the head corresponds 
to the growth of a new billow. Hence we roughly equate the period of oscillation of 
the nose velocity with the time taken by a billow to grow, and we plot on figure 14 
a dimensionless oscillation period using the mean nose velocity as a function of 
the mean local Reynolds number Re,. Data are shown for all those runs that 
exhibited one or more clear oscillation cycles, while runs shown as squares are 
considered circumspectly because the oscillation period in these cases was an integer 
multiple of the inertial period 2x/f and oscillation amplitudes tended to be greater, 
suggesting an inertial resonance within the channel. 

At small Reynolds numbers the dimensionless period increases rapidly with 
decreasing Reynolds number until one oscillation period surpasses the time taken by 
the nose to  travel the length of the channel. The head of the current then appears 
to be a very stable and only slowly varying feature. We conclude that ~ viscous effects 
reduce the growth rate of the billows. At large Reynolds numbers (Re, > lo3), on 
the other hand, the oscillation period appears to become independent of Reynolds 
number. There is a large scatter ( f 30 %) in the data, but we expect some of this to 
be due to a dependence upon the cross-stream slope of the density interface (given 
by R,/H,) and other variations in the basic flow at the nose. The mean value a t  
& > lo3 is g’t*/aN = 6.7 & 2.3, and in order to compare this growth time with that 
given by Britter & Simpson we can follow their approach to estimate the velocity 

__ 
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FIQURE 14. The dimensionless period g‘ t * / i i ,  for observed oscillations of the nose velocity as a 
function of the mean local Reynolds number. This period could not be measured in all runs. The 
squares show oscillations that may be due to inertial resonances. Lines show the mean period 
g ’ t * / t i N  = 6.7 k2.3 for Re, > to3 and a fit by eye to the data for zN < lo3. 

difference AU. First, the fluid velocity near the wall within the intrusion is greater 
than the nose speed (x 1 . 3 ~ ~  according to information obtained some distance 
upstream, see 85.1). Secondly, the environment fluid on the wall a t  the position where 
the billows are growing moves relative to the nose at a velocity x - 1 . 5 ~ ~  (see 
Britter & Simpson). Therefore AU x 2uN and billows in the rotating case have 
g’t*/AU x 3.3+ 1, in accord with the result for non-rotating currents. 

Three further properties of the flow provide useful comparisons : the angle included 
by the density interface on the leading edge of the head and the free surface, in a 
sample of ten runs, lay in the range 35’48’; the ratio of the maximum amplitude 
of billows to  their wavelength lay between 0.5 and 1.0; and the ratio of billow 
amplitude t o  current depth h, took values from 1.0 to 3. All of these results are 
identical with those reported by Britter & Simpson, and, along with the measured 
oscillation periods, lead us to conclude that the background rotation and the 
three-dimensional structure of the boundary currents do not significantly alter the 
flow on the sidewall very close to the nose or the accompanying shear instability. 
The instability is of the Kelvin-Helmholtz type and is not a rotationally dominated 
phenomenon as implied by Stern et al. (1982). This result can be understood when 
we see that the oscillation period discussed above, if rescaled by the rotation period, 
lies in the range 0.05 < f t* /4~  < 0.25 (or 0.1 < ff&/g’ < 0.6) for large Reynolds 
numbers. Thus rotation does not affect the shear instability simply because the 
growth rate of billows is much greater than the rotation rate SZ. Billows begin to be 
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strongly influenced only after they have reached their maximum amplitude and 
broken. 

So far we have mentioned only the dimensions and growth rate of large-amplitude 
billows. A guide to whether the background rotation is of importance in determining 
the conditions under which the nose is unstable, or the position on the leading edge 
a t  which waves begin to grow, is given by the linearized stability analysis for a sharp 
density interface in a rotating system (Chandrasekhar 1961 ; Huppert 1968). 
Noting that this analysis assumes uniform horizontal flow in each layer and a 
horizontal interface, i t  establishes that rotation is always stabilizing but has 
negligible effect if 2Q2/yg’ < 1 ,  where y is the horizontal wavenumber. Assuming 
that the billow wavelength on the gravity currents scales with current depth h,,, the 
criterion becomes g’/f2h, >> 1 or, equivalently, R,/H, % (h,/H,)?. For currents with 
R,/H, < 1,  this result is not valid as the assumptions of the analysis are then far from 
being satisfied. However, for wide currents we can be confident that rotation plays 
no stabilizing role. 

5. Upstream flow structure 
5.1. VeZocity profiles 

Velocities far behind the nose were measured as a function of time a t  a fixed distance 
of 60 em downstream from the lock barrier. Only lock B was used for these 
measurements. Consistent results were obtained from four experiments with different 
rotation rates and initial depths Ho but all having large local Reynolds numbers 
(uN hN/v  x 2 x lo3), small Ekman numbers (E, < lop3) and large aspect ratios 
(Ro/Ho 2 1). Profiles of the downstream velocity at four selected times for one 
experiment are shown on figure 15, where the cross-stream distance y is non- 
dimensionalized by the absolute scale R, = (g’H,)i/f ,  and the fluid velocity is 
normalized by the absolute scale (g’H,)i. The elapsed time AT = f ( t - t N ) / 4 n  is given 
in rotation periods, where tN is the time a t  which the nose passed the observation 
position and t is the mean time in the short interval required for the velocity 
measurement. The arrows on the ordinate a t  the right indicate the velocity U of the 
nose at the times of the first and last profiles shown (upper and lower arrows 
respectively). The arrow on the abscissa near the end of each curve indicates the 
measured position of the outer edge of the fresh water (which was dyed with a colour 
different from that of the small blobs used for velocity measurements). Velocity 
profiles obtained a t  intermediate times show a slow variation of the profile, and we 
are confident that these profiles truly represent the mean flow. Time-exposure 
photographs showing the motion of neutrally buoyant particles reveal consistent 
profiles. 

For a short time of the order of 0.1 rotation periods after the nose had passed the 
observing position, the injected dye mixed rapidly within the current (both in the 
vertical and horizontal) and no velocity measurements were possible. After this 
period, however, vertical motions were negligible compared with horizontal motions, 
and velocities normal to the wall were less than 10 % of the downstream components 
(this can also be seen in figure 19c). The first profile shown on figure 15 is a t  AT = 0.13. 
At times close to this, flow in all of the runs consists of a streamwise velocity 
u = (1.3-1.5) U a t  positions very close to the wall. The velocity has a maximum near 
the wall a t  y x 0 and falls to u = U at a distance y / R ,  x 0.2 from the wall. However, 
the consequent mass flux toward the nose rapidly disappears with time, because in 
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FIQURE 15. Four cross-stream profiles of the flow velocity for one experiment, taken 60 cm from 
the barrier of lock B at various times after the nose passes: 0 ,  T = 0.13, A, 0.31, ., 0.46, *, 
1.3 rotation periods. Lines are drawn by hand through the data. The wall is at  y = 0 and the position 
of the edge of the dye (which was clearly defined) is shown by an arrow near the end of each curve. 
Horizontal arrows at right show the nose velocity U at the times of the first (upper arrow) and 
last (lower arrow) profile. The deformation radius (g’h,p/ffor the head when it passed the observing 
position was 0.65R0 and the head width was 0.38R0. 

all runs the maximum flow velocity becomes smaller than the nose velocity after a 
time 0.25 5 AT 5 0.6. The second profile shown is at AT = 0.31, by which time the 
maximum has already moved a considerable distance from the wall. The later profiles 
on figure 15 are a t  AT = 0.46 and AT = 1.31 and show a further broadening of the 
current along with a steadily decreasing flow velocity on the wall. For each profile 
the position of the outer edge of the (dyed) fresh water corresponds closely with the 
position a t  which the measured streamwise velocity falls to zero and beyond which 
no motion was detected. The current width is discussed further in $5.3 and 
implications of the velocity profiles for the mass flux along the current are examined 
in $5.2. 

The broadening of the current and reduction with time of the velocity on the wall 
are not due to wall friction since this would create only a very thin boundary layer 
of thickness (vt);, which will have grown to 0.06R0 in the time AT = 1.3. The 
broadening must be due in part to  diffusion of momentum by the horizontal eddy 
motions. The decrease of the wall velocity and migration of the velocity maximum, 
though, must be the result of an adjustment of the flow toward a steady, geostrophic 
boundary current with uniform potential vorticity f / H ,  and no variation in the 
streamwise direction. A similarity solution for such a laminar current was given by 
Stern (1980) and Stern et al. (1982). More simply, i t  can readily be shown from the 
equations for geostrophic balance and conservation of potential vorticity that the 
relative vorticity -du/dy of this ideal flow must be negative and the velocity and 
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depth profiles hyperbolic (Griffiths & Linden 1982). Maximum depth then occurs at 
the wall, and maximum velocity at the outer edge. With the presence ofeddy motions, 
though, the laboratory currents remain far from this ideal solution throughout the 
observation period. 

Reflection of the expansion wave in the lock must be considered when measuring 
velocities far upstream. If the speed of this wave is taken to be a constant (g‘Ho)i 
relative to the local fluid velocity (though i t  will actually decrease as the depth of 
the upper layer decreases), we calculate for the experiment of figure 15 that  i t  cannot 
reach the measuring position 60 cm from the lock until a time AT > 0.9 after the nose 
has passed. Hence the first three profiles shown (and possibly also the last) were 
measured before the expansion arrives. 

5.2. M a s s j u x  relative to the nose 
The measured velocity profiles indicate that the maximum flow velocity a t  the fixed 
observing position and just beneath the free surface became less than the nose 
velocity only a short time after passage of the nose. To an observer moving with the 
nose this implies that, beyond a certain distance upstream, mass is being carried away 
from the nose at all positions across the stream. An evaluation of the streamwise 
position a t  which the net mass flux toward the nose falls to zero would require 
measurements of the depth profiles simultaneous with the velocity profiles. However, 
it  is clear that the intrusion consists of a slug of fluid from which there is a net mass 
loss, the mass being removed largely near the outer edge of the current (see first profile 
on figure 15). Hence the nose must continually decrease in size, as was directly 
observed. This result stands in contrast with the behaviour of two-dimensional 
non-rotating gravity currents in which mass is carried toward the nose at a rate that 
balances the detrainment (mixing) of fluid into the ambient layer, a balance that can 
produce a steady flow. I n  the presence of rotation the effective ‘detrainment’ of 
buoyant fluid (see below) is much greater because fluid is left behind near the outer 
edge of the flow behind the nose. However, this additional horizontal ‘detrainment’ 
does not explain the unsteadiness since, in the absence of other effects, the nose 
velocity would be expected to  rapidly adjust until a steady balance was achieved. 
An explanation of the unsteadiness is offered in $7.3.  

A more general and illuminating description of the upstream structure, this time 
in terms of the distance behind the nose, can be extracted from data such as that 
on figure 15. The time t-tN can be interpreted as a measure of the distance d from 
the nose to the observation position, which in terms of the initial deformation radius 
is 

f ( t - t N )  u, (5) 

where the time-dependent nose velocity U(t )  is known for each run and takes values 
U 5 1 .  More directly, we can measure the distance from the nose to the measurement 
position at the time a t  which measurements are taken. However, in interpreting data 
taken at one particular distance from the lock in terms of the distance behind the 
nose, it must be remembered that we assume an approximate self-similarity of the 
flow over the time period t-t,, and it is not clear how accurately the results will 
describe the flow a t  times when the nose is much further from the lock. Nevertheless, 
it  is a t  least a qualitatively useful approach and gives a reasonable picture of the 
laboratory currents for times during which the nose is within the length of the 
channel. Thus the profiles shown on figure 15 were taken at distances 2.1, 3.8, 6.2 
and 15.9 deformation radii R, behind the nose. 
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(ii) (iii) 

FIGURE 16. Sketch of the flow relative to the nose in the boundary current at one instant in time: 
(i) plan view; (ii) a vertical plane parallel to and close to the wall; (iii) cross-section as viewed from 
the end of the channel. The details of flow in the head and billows is highly unsteady and the billows 
on the interface extend from the wall to the edge of the current. Velocity profiles are based on 
measurements such as those shown on figure 15, the rest from particle motions. The definition of 
measured head depth h,, head width I, and upstream depth h, are shown. Instability of the nose, 
mixing beneath the current and radiation of inertial waves are indicated. 

Having a description of the flow as a function of distance behind the nose, we are 
now in a position to give an overall diagrammatic representation of the flow relative 
to the nose of the boundary current. In  order to do this i t  is useful to assume that 
the flow relative to the nose is only slowly varying in time (see $7).  On figure 16 are 
sketched the streamlines and profiles of velocity relative to a reference frame moving 
with the nose, along with an indication of the spatial dependence of the structure 
of the flow. Since the flow is everywhere turbulent, the downstream velocities shown 
must be considered as mean local values. Figure 16(i) represents the flow in a 
horizontal plane near the surface, (ii) the flow in a vertical plane near the wall a t  y = 0, 
and (iii) the cross-sectional shapes of the nose (solid curve) and upstream current 
(broken curve). The latter qualitative shapes are derived only from direct observations 
through the end of the channel. In anticipation of observations presented in $6 we 
have also included in this sketch the radiation of inertial waves, which must occur 
in such a system. The formation of billows and cyclonic vortices, along with their 
influence on vertical mixing beneath the current, are indicated in (ii) and (iii), though 
the plan views of surface flow taken alone would suggest that eddies exist only near 
the outer edge of the current. As indicated in (i) the billows develop in curved lines 
across the density interface and appear a t  the current edge more as horizontal billow 
or eddy motions. 

In  all runs we find that the maximum fluid velocity relative to the nose becomes 
negative a t  a distance within the range 3 < d/Ro < 7 upstream of the nose. This 
behaviour was not noticed by Stern et al. (1982), whose observations concentrated 
upon a region within about 10Ro of the intruding nose. Another difference from the 
description of the flow given by Stern et al. is that our streak photographs and direct 
observations of particle motions show that there is no dividing streamline that could 
be used to define the width of the flow near the nose. Neglecting a very thin viscous 
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boundary layer on the wall, the only stagnation point on figure 16 is a t  y = 0, and 
all motions normal to the wall are directed away from the wall. The Faximum 
streamwise velocity also occurs on the wall. We must therefore be careful when 
discussing ‘detrainment’ of fluid from the current since, in the sense of Stern et al. 
all of the fluid (and not just that  outside a dividing streamline) is now detrained as 
i t  approaches the nose. On the other hand, most of the fluid that moves away from 
the nose near the outer edge or bottom interface of the flow remains to take part in 
the boundary current, with the eddies retaining a translational velocity, and only 
a relatively small amount of fluid is actually mixed with the lower layer. No estimate 
of the effects of this true detrainment due to mixing have been possible and more 
quantitative information on the space and time dependence of the net mass (or salt) 
flux along the current would require simultaneous measurements of velocity and 
depth profiles. 

5.3. Upstream current width 

From velocity profiles such as those shown on figure 15 i t  is possible to  define several 
widths to characterize the flow. We can also use the outer edge of the upper-layer 
fluid (made visible by dye), which appears to be clearly defined and is easily measured. 
This is also a useful quantity for comparison with geophysical observations as it gives 
the complete width of the turbulent current. At the same time, the velocity profiles 
far upstream reveal a significant mean streamwise velocity all the way to the edge 
of the dye. On the other hand, Stern et al. argued that only an inner laminar region 
of the current should be considered for the purpose of comparison with their 
dynamical model of the flow and, in their experiments, chose to measure the distance 
from the wall to a line of maximum shear. This distance was then averaged over time 
and space (but not too close to the nose and not ‘at very large distances upstream’) 
for each run. 

On figure 17, three different definitions of the width (all measured 60 em from the 
lock barrier) for four different experiments are plotted against the time 
AT = f ( t - tN) /4n  elapsed after passage of the nose past the measuring position. The 
filled symbols show the position of the outer edge of the dye a t  the surface, the open 
symbols the position of the maximum velocity gradient and the crosses and asterisks 
the position of the velocity maximum. The dye edge always corresponds closely with 
the position a t  which the downstream velocity vanishes. The absolute scaling of y 
by the deformation radius R, is retained and the experiments have R, = 5.4, 7.8, 11.7 
and 35.4 cm. The scale d/R, is included to  show distance behind the nose but is only 
approximate as each run has a slightly different velocity U .  No velocity profiles could 
be taken at AT < 0.1 due to rapid turbulent motions within the current, but the width 
of the head (IN x 0.38R0 at this measuring position for these runs) is shown by the 
letter ‘ N ’  a t  AT x 0.03. 

As the current propagates along the channel, all three characterizations of the 
width increase with time. After about one rotation period (AT > 0.8), or ten 
deformation radii behind the nose, the widths appear to approach asymptotes that 
place both the outer edge of the dye and the maximum shear at y x R, and the 
maximum velocity a t  y z 0.5R0. Since the head width is 1, z 0.38R0 in these runs, 
the total width of the flow a t  the observation position increases by almost a factor of 
three after the head passes. 

Such variations of width suggest that  the previous averaged estimates of the 
distance from the wall to  the line of maximum shear underestimate the width far 
upstream. The mean width 1, found by Stern et al. satisfied I ,  z 0.42(g’h,)i/f, where 
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FIGURE 17. The width of the boundary current at a fixed distance of 60 cm from the lock barrier 
for four runs with different Rossby radii but similar initial velocities as a function of tine elapsed 
after the nose passes that position. Time is given in rotation periods Sx/J A second scale shows 
the approximate distance from the measuring position to the nose as found from ( 5 )  by using the 
mean value of U for the four runs. Filled symbols show the outer edge of the dye a t  the surface 
(-), open symbols the position of maximum shear (---) and other symbols the position of the 
velocity maximum (-.-*- ). Parameters are 

0,  0 ,  +, R, = 11.7 cm, (g’H,)f = 7.5 cm 5-1; 
0, ., A ,  R, = 7.8 cm, (g’H,)t = 7.9 cm s-l: 

V, v, x ,  R, = 5.4 cm, (g’H,p = 8.1 cm s-l. 
A, A, *, R, = 35.4 cm, (g‘H,)i = 8.0 cm s-l; 

- 

h, is a space and time average of the upstream depth a t  the wall. For comparison, 
taking h, < iH, ,  the data on figure 17 indicate that 1, x R, > 1.4(q‘hu)?/f a t  a 
distance 10R, behind the nose. If the flow had been measured a t  a position further 
from the lock then the local depth h, would have been smaller and the above 
comparison even worse. On the other hand, the average of Stern et al. was strongly 
biased toward positions within ten initial deformation radii behind the nose and their 
data, when replotted, show a linear increase of dimensionless width J;/(g’h,$ with 
increasing channel (or observation) length measured in deformation radii R,. These 
variations of width were attributed to non-hydrostatic effects a t  small aspect ratios, 
but they are also likely to have been a result of the spatial and temporal variations 
of width observed here. I n  any case, given the averaging procedure the data are 
consistent with ours. 

6. Radiation of inertial waves 
Disturbances that contain frequencies less than 2 0  will create inertial waves in a 

rotating fluid. The group velocity of a wave with frequency w and wavelength h is 
C, = ( 0 h / 2 x )  cos 0 directed a t  an angle 0 = sinp1 ( w / 0 )  to  the vertical. Thus the 
intrusion of the nose of the boundary current, the formation of billows and eddies 
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FIQURE 18. Time-exposure photographs of particles in a horizontal sheet of light 11-13 cm (or three 
current depths) below the free surface showing wave-like and eddy motions in the deep lower layer. 
The viewing section is 80 cm long and begins 30 cm from the lock barrier. Rotation is anticlockwise 
and flow moves from left to right. Wisps of fluorescein dye are entrained from the upper-layer 
current (with head depth h,  x 4 cm) and make visible the cyclonic vortices beneath the current. 
Photographs were taken (a) 0.36, ( b )  0.77 and (c) 1.15 rotation periods after the opening of the lock. 
An arrow marks the position of the nose in (a) and ( b ) ,  but it is 50 cm past the viewing section 
in (c). The streaks reveal that velocities in the lower layer are x 10 yo of the velocity of the current. 
Total exposure time 3.0 s (including the dot at  the end of each streak); f =  0.680 s-l; 
(g’H,,)? = 7.6 cm s-l. 

and the subsequent translation of these structures will produce a broad spectrum of 
inertial waves which can propagate ahead of the nose, away from the wall and deep 
into the lower layer (as indicated on figure 16). I n  order to detect any consequent 
motions we have taken time-exposure photographs of neutrally buoyant particles in 
the deep lower layer. 

On figures 18 and 19 are shown two sequences of time-exposure photographs taken 
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in plane view. Particles are in each case illuminated by a horizontal sheet of light 
about 2 cm thick. On figure 18 the sheet of light is positioned 11-13 em (or about 
three head depths h N )  below the free surface. At this level wavelike motions are visible 
well before the nose arrives in the viewing section ( a ) ,  though the particles were 
stationary before the lock was opened. Stronger motions directed outward from the 
nose ( b )  appear as the nose passes and the lower layer contains more random eddy 
motions once the nose has travelled 50 ern (or ten head widths) past the viewing 
section (c ) .  Particle velocities here are of the order of 10% of the nose velocity. I n  
(c) there are also relatively strong vortices close to the wall 50-100 cm upstream from 
the nose. These have been made more visible by adding a small amount of fluorescein 
dye to the upper layer, small wisps of which are entrained downwards into the vortices 
below the interface. 

For figure 19 the horizontal sheet of light is positioned just 1-3 cm below the 
surface, and particles are in both fluids. The lower layer this time contains a small 
amount of fluorescein so that the outer edge of the upper layer can be seen. The nose 
of the current is not distinct as the exposure must be long to reveal the relatively 
small velocities in the lower layer. At this level no motion is detected well ahead of 
the nose but there is again a stream flowing forward and outward from the nose (a ,  b )  
in a manner that is quite different from the flow about bodies in a nonrotating system. 
There is again a mixture of eddy and wavelike motions in the lower layer 0.5-1 
rotation period after the nose passes (c )  and the velocities are about 10-20 yo of the 
nose speed. As mentioned in $5.1, particle velocities within the current are almost 
parallel to the wall, though there is some evidence of the presence of eddies. The 
photograph in figure 19 ( d )  was taken at a much later time (7.9 rotation periods after 
removal of the lock barrier) at which the nose had almost returned to  the lock along 
the opposite wall of the channel. It is included to show the growth of rotationally 
dominated waves, which are long compared to  the current width, at large times and 
very large distances behind the nose. 

Though the particle velocities in the deep lower layer a short distance behind the 
nose are small, they occur throughout a volume of fluid that is at least an  order of 
magnitude greater than the volume of the current itself. The many wavelike and eddy 
motions created by the passage of the gravity current therefore contain a significant 
amount of kinetic energy. Furthermore, while the small cyclonic vortices are confined 
to the wall, they extend through the interface and many current depths into the lower 
layer, thereby tending to couple the two layers together and exerting a drag on the 
upper-layer flow. I n  $7 we investigate the influence upon the flow of the drag due 
to vortices and radiation of inertial waves. 

7. Dynamics of boundary currents 
7.1. The momentum equation 

By considering the flow along a streamline that lies on the wall at y = 0,  the 
conservation of momentum in a hydrostatic approximation can be written as 

au ,ah au F* 
= - u z  - 7, 

at - + g  

where u is the fluid velocity parallel to the wall and F,/p is a contribution (per unit 
mass) to  the drag due to the presence of rotation. Thus FQ is the wave drag due to 
inertial waves and columnar vortex structures (the latter can be thought of as being 
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driven by inertial waves of very small frequency), while the first term on the right 
is the non-rotating drag force per unit mass, F, /p .  

I n  order to  make a comparison between the magnitudes of the individual terms 
in (6) we first resort to empirical observations, which show that the exponential decay 
of the nose velocity uN never corresponds to  a variation of uN greater than 3 % during 
the timescale (hN/g‘)l characteristic of accelerations due to the buoyancy force. This 
timescale is simply (hN/g’)6 x fl(hN/lN)f x f f ,  both in the laboratory and in nature. 
Hence, so long as the rapid oscillations of thejow at the nose are assumed to be of negligibly 
small amplitude and only the smoothed velocity considered, the time dependence in 
(6) is very small compared with the buoyancy term near the nose. Well behind the 
nose, on the other hand, the x-derivatives of depth (and velocity) become very small 
(if perturbations due to individual eddy structures are smoothed out) and the time 
dependence cannot be neglected. We therefore discuss the dynamics of the boundary 
current by dividing the flow into two regions: very close to the nose the flow is 
assumed to be quasi-steady (despite small-amplitude high-frequency variability), 
while further upstream the buoyancy force is neglected and the flow is allowed to 
be unsteady. The most difficult task is to evaluate the magnitude of the wave drag. 

7.2. Evaluation of drag forces 

In  order to understand the evolution of gravity currents in the presence of rotation, 
it is necessary to  estimate the flux of momentum into the lower layer. For this purpose 
it is useful to consider first the forces acting on isolated solid bodies moving through 
a rotating fluid in a plane perpendicular to the rotation axis. Taylor (1923) showed 
that the net force G on a two-dimensional object about which the fluid motion should 
be in a plane perpendicular to  the rotation axis is equal and opposite to  the Coriolis 
force that would act on a mass of fluid with the same volume as the object. Thus 
the force is normal to the direction of motion and G = pfu, V ,  where p is the density 
of the fluid, u* the velocity of the object and V its volume. For three-dimensional 
objects and finite Rossby numbers there is no longer such a simple result and the 
object experiences a force at some angle to  the direction of motion. 

By attaching solid bodies to a spinning disk or suspending them as the bob of a 
pendulum immersed in a rotating container of water, Mason (1975) was able to 
measure the steady forces on objects of various shapes. He found that,  as the Rossby 
number Ro = 4 2 5 2 1  increased from 5 x to 0.5, the component FD of the 
force (per unit volume) in the direction opposite to the motion (the drag force) 
increased from a small value that was solely due to Ekman-layer friction up to  the 
value FD = 0.5(G/ V )  Z/a, where 1 is the width of the object and a its length parallel 
to the direction of motion. This force also varied with the height h of the body, the 
value quoted above being the maximum, which occurs a t  h/(al) i  x 1. On the other 
hand, the force acting normal to the direction of motion decreased from G a t  Ro < lo+ 
to zero a t  the larger Rossby numbers. These forces further depend on the total depth 

FIGURE 19. Time exposures of particles in both fluids in a horizontal sheet of light 1-3 em below 
the surface and taken (a) 0.48, (b) 0.76, (c) 1.27 and (d )  7.9 rotation periods after opening of the 
lock. An arrow marks the nose position in ( a )  and ( b )  but it is 30 cm past the end of the viewing 
section in (c). The width of the channel (30 cm) serves as a scale. Frame ( d )  was taken a t  a very 
large time and shows the first rotationally dominated waves to grow on the upstream flow. Total 
exposure time 1.56 s (with direction indicated by a dot at the end of each streak line). Rotation 
is anticlockwise. Initial conditions are as in figure 18. 



392 R. W .  Grifiths and E.  J .  Hop$nger 

D of the fluid, and Mason showed that the measurements for a given object shape 
collapse onto a single curve when plotted against the parameter F = (252Z/u,) h/D.  
This is the parameter that  was first introduced by Hide (1961) and verified 
experimentally by Hide & Ibbetson (1966) as that which determines the presence or 
absence of a Taylor column above the solid body. For F > 100 a Taylor column 
(extending throughout the depth of the fluid) is present, while for F < 1 no column 
forms. Thus Mason’s measurements indicate that the forces on moving bodies depend 
upon the presence or absence of a Taylor column. The drag force is given roughly 
by FD M O.5pj’u,(Z/a) for 9- < 4, conditions under which no Taylor column exists. 

The above results apply only at Ro < 1. The reason for this can be seen by 
considering the total drag FD as being the sum of a drag F, that  is due to the radiation 
of momentum by inertial waves and a ‘non-rotating’ drag F,, which is simply the 
drag per unit volume +CD pEhu2/ V (CD a dimensionless drag coefficient) that  would 
act in a non-rotating system. Thus the right-hand side of (6) is (F,+  F,)/p = FD/p. 
I n  Mason’s experiments with Ro ,< 0.5, FD was always much greater than F,. 
However, the ratio of the two is proportional to  the inverse of the Rossby number 
(FD/Fo M +G/Fo M C6lRo-l ( l /u ) - l ) ,  and therefore thenon-rotatingdragshould become 
dominant a t  large Rossby numbers if Z/a M 1.  

Returning attention to the gravity currents, we can consider the nose and each 
billow or eddy as moving obstacles that  create inertial waves and Taylor columns 
in the lower layer, though the presence of the vertical wall and the flexibility of the 
shape of the density interface are additional complexities whose effects cannot be 
estimated a t  this stage. Very close to the nose the appropriate Rossby number uN/f I, 
is rather large and, since F < 0.25 whenever hN < +D, no Taylor column exists (in 
either layer). Hence the total drag is likely to be dominated by the non-rotating 
contribution F, (though this conclusion depends on the value of the drag coefficient 
C,) and the second term on the right of (6) will be small. Since we are assuming that 
the flow a t  the nose is quasi-steady, we are left with the inertial-buoyancy balance 
that applies at the nose of a non-rotating gravity current (Benjamin 1968). Some 
distance behind the nose, on the other hand, the upper layer is a turbulent flow, for 
which we are interested in the mean streamwise velocity a. The mean cross-stream 
velocity vanishes, so that (6) is valid on all streamlines, not just that  a t  y = 0. Since 
in this region we are neglecting the streamwise derivatives the wave drag cannot be 
neglected and we are left with a purely inertial motion which is driven by the 
momentum possessed by the fluid when it  leaves the lock. Below we discuss the 
implications of the momentum balances in each region. 

7.3. Quasi-steady $ow at the nose 

Since the nose velocity uN is only slowly varying in time it  is possible to transform 
(6) to the frame of reference moving with the nose. The inertia-buoyancy balance 
appropriate a t  the nose then yields the Bernoulli invariant along the streamline on 
the wall: 

(7)  
a 

~ [ ~ ( U - U N ) ~ + + ’ ~ ]  = 0 ( y  = 0) .  

Benjamin discussed the solution of (7 )  for two-dimensional non-rotating gravity 
currents (for which it applies a t  all values of y ) .  By applying i t  on a streamline in 
each layer and passing through the stagnation point at the nose, he showed that the 
dynamic pressure at the nose is equal to that far behind the nose. Thus 

$(a” - UN)’ + g’h, = &h&> (8) 



Gravity currents in a rotating Jluid 393 

where u, and h, are the fluid velocity and depth far behind the nose. I n  this steady 
two-dimensional case the mass flux relative to  the nose must be equal to any 
detrainment due to mixing across the density interface, but, if the mixing is neglected, 
u, = uN and (8) gives uN = (2g’h,)i. Laboratory experiments (Britter & Simpson 
1978; Simpson & Britter 1979) show that mixing has a measurable effect, causing 
the upstream velocity to be greater than the nose velocity, and therefore, by (8), 
increasing the nose velocity. 

For the three-dimensional gravity current in a rotating system, Stern et al. (1982) 
followed Benjamin’s approach to obtain (8) for the streamline on the wall. I n  this 
case the presence of cross-stream fluid motions normal to the wall a t  the nose (as well 
as mixing) imply that a mass flux toward the nose is necessary at some values of y ,  
and possibly a t  y = 0. Hence u, = uN cannot be assumed. I n  order to solve (8) for 
the nose velocity (but again assuming no dissipation or vertical mixing), Stern et al. 
evaluated the upstream flow velocity u, on the wall by applying a similarity solution 
for a two-layer flow with uniform potential vorticity and no variation in the 
streamwise direction. This solution has a hyperbolic cross-stream velocity profile 
with a minimum at the wall.? The calculated nose velocity is almost independent 
of the potential vorticities and ratio of layer depths and lies in the range 
1.54 < U N / ( g ’ h u ) i  < 1.57. (The corresponding current widths lie in the range 0.41-0.52 
deformation radii (g’h,)i/f.) 

On the other hand, the observations reported in this paper, in particular the 
upstream velocity measurements, indicate that the similarity solution does not give 
a good description of the flow far behind the nose. We wish to stress that  the measured 
wall velocity far upstream is negative relative to the nose, while the model predicts 
large positive values (e.g. uU-uN = 2.18(g’hU)* for the case ofzero potential vorticity). 
Furthermore, our observations of motions in the lower layer suggest that  this 
discrepancy is most probably due to the transfer of a significant amount of energy 
into the lower layer and to turbulent dissipation upstream of the first large billow. 
(This is discussed further in 57.4.) A two-dimensionalization of the motions in both 
layers under the influence of the background rotation (as predicted by the Taylor- 
Proudman theorem) implies that the energy loss is experienced even by the 
streamlines that pass along the free surface. Thus an application of (7) beyond the 
laminar nose region is invalid and no reliable prediction of the nose velocity is possible 
in the absence of a more complex model for the flow. Intuitively, though, the nose 
velocity and the relative fluid velocity are still expected to scale, at least to  some 
extent, with (g’h,)i, since this is the only characteristic velocity scale (other than that 
based on H,,) and since, to  a first approximation, the buoyancy-inertia balance holds 
near the nose. Dissipation associated with turbulent mixing, as well as a small wave 
drag on the nose itself, are also expected to reduce the velocity below that predicted 
by Stern et al. The data on figures 11 and 12 show that uN % 1.3(g’hu)+. 

7.4. Wave drag on the upstream flow and exponential decay 

With streamwise gradients neglected, integration across the current of the momentum 
balance yields 

where 1 and h are the width and depth of the upper layer. The term on the right of 

t This minimum velocity was predicted to be always positive relative to the nose, but then the 
streamlines on figure 3 of Stern et al. are inconsistent with their model, since they indicate a broad 
region of flow away from the nose against the wall (a negative velocity). 
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(9) is the total inertial drag per unit length and will be estimated from Mason’s 
measurements of the forces on solid bodies. 

The drag on the upper layer is associated with translational motion and other 
temporal variations of the billows and vortex structures, which tend to couple 
together the flow in the two layers. These structures are observed to move with a 
speed that is an order of magnitude less than the speed of the nose, but have 
dimensions comparable to the current width (a property that may or may not hold 
a t  geophysical scales, see $9.3), so that the corresponding Rossby number is of order 
10-1 or less. On evaluating Hide’s parameter 9- in each layer by using the current 
depth as a topographic height for the interface, we see that the eddy motions in the 
upper layer are two-dimensional and therefore tend to ‘ trap ’ much of the fluid moving 
along the current, while, for deep lower layers with D/h, > 10, we find .T < 1 .  Thus 
vortex motions are not expected to reach the bottom and the results from solid bodies 
suggest that the drag is dominated by the effects of rotation (Fo < FQ). Neglecting 
the dynamically free shape of the density interface, we write the drag per unit length 
as 

f hFQdy x kpfclh,, 

where the depth perturbations and horizontal dimensions of eddies are assumed to 
scale with h, and 1 respectively. The introduced constant k is expected to take values 
of the order of lo-’. With this, (9) becomes 

0 

az 
- x -kfa, 
at 

which gives, after non-dimensionalizing by an absolute scale, 

where t, is the time a t  which the nose passes the position x.  The function G is by 
assumption slowly varying in x.  It decreases with increasing distance along the wall 
because the velocity of the nose decreases, and is of order one if ti is to  be of order 
(g’Ho)? at the nose. 

I n  this simple model for the flow, the ‘rotating drag’ in (10) is a force that is 
experienced by the fluid upstream but not directly by the nose itself. However, the 
dominance of the wave drag over the non-rotating drag Fo = paaU/ax  implies that  
(lo), (11) describes the velocity of fluid parcels as well as the velocity a t  a fixed 
position x. The exponential decay upstream will therefore cause a net mass flux away 
from the nose, hence an exponential decay of the nose velocity. If the exponential 
decay time from (1 1) is compared with the empirical relations (3) and (4) for the decay 
time of the nose velocity, the empirical value of the coefficient k( = 7-l) is always in 
the range 0.01 < k < 0.1. These values are a little smaller than expected and might 
be suppressed to some extent by the unsteady response of the lower layer near the 
beginning of each run. From Hide’s parameter, a columnar mode (see also Heikes 
& Maxworthy 1982) in a steady flow will penetrate a distance d x h( fZ /u ) ,  but in the 
unsteady case it will require a time d/cg (where cg is the group velocity of low-frequency 
inertial waves) to be established. This time in our experiments is typically of the order 
of 2Of l ,  which in many runs is a large fraction of the observation time. This 
unsteadiness may also contribute to  the scatter in the values of the decay time in 
figure 10. 
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~ 

A$ 7 g’ f H. Re, 4 RO - Run 
no. (cm s-*) (s-l) D (cm) R, 

50 11.5 0.757 0.88 2600 1.7 13 1.85 102 68 54 
51 11.0 0.251 0.86 1800 5.9 38 0.648 87 116 91 
52 10.2 1.514 0.80 3200 1.0 6.0 4.11 208 81 62 
53 9.4 0.881 0.87 1900 1.7 10.0 2.44 250 138 103 

TABLE 1 .  Results from experiments in which thLboundary current flowed onto a shallow lower layer 
( D  = 10 cm). The mean nose Reynolds number Re, = uNh,/v and Ekman number E, = v / f H t  are such 
that viscosity is not expected to affect the results. The exponential decay time 7 and limitin8 distance 
xM have uncertainties of about 10%. R, = (g’H,$/f is the initial deformation radius, A; the lock 
dimension. 

8. Intrusions over a shallow lower layer 
Only flow over a deep lower layer has so far been considered. This is the simplest 

case because momentum is radiated away from the upper layer into an effectively 
semi-infinite fluid. If, on the other hand, the lower-layer depth D is comparable to 
the depth of the current then the response of the lower layer to low-frequency forcing 
a t  the density interface will be different. For h,/D = 4, Hide’s parameter takes values 
9- 2 5, which suggests that columnar structures in the lower layer may reach the 
bottom, as indeed would have the intense vortices on figure 19 had the lower layer 
been shallow. The consequent drag force on the upper layer will be smaller than that 
exerted in the case of a deep lower layer as the whole of the fluid beneath the current, 
being trapped in a series of Taylor columns, will tend to move with the upper layer 
and thereby reduce relative motion. 

In  order to test the importance of the lower-layer depth and the rotating-drag 
hypothesis, a number of experiments were carried out with a shallow lower layer. All 
conditions were similar to  those outlined in $2, except that  D = 10 cm and only lock 
A was used. The fresh water in the lock occupied 80-90% of the total fluid depth, 
and the depth of the nose near the beginning of each run was close to 4D. The 
upper-layer flow appeared to  be qualitatively the same as that observed with a deep 
lower layer, though rotationally dominated (quasi-geostrophic) waves this time 
became visible on the current just outside the lock after only four to five rotation 
periods, about the time a t  which the nose reached the far end of the channel. The 
nose velocity again decreased with time in a manner that was well described by an 
exponential law of the form (3). The decay timescale 7 obtained by applying ( 1 )  and 
(3) is given in table 1 ,  along with other parameters of the system. All of the values 
of 7 are three to five times greater than those expected with a deep lower layer (fi ures 
9 and lo), but show a very similar dependence on the Froude number Fr = At/R,,. 
Hence the results support the prediction that less momentum is transferred to a 
shallow lower layer, leading to a slower exponential decay of the nose velocity. 

Q 

9. Conclusions and further discussion 
9.1. Summary of the results 

The release of a volume of buoyant fluid from a lock a t  one end of the long rotating 
channel gives rise to a three-dimensional gravity current that  propagates along one 
wall of the channel and a Kelvin wave that propagates around the lock. At the high 
Reynolds numbers achieved, the gravity current flow is turbulent and some of the 
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general features of the rather complex flow are sketched on figure 16. As in the case 
of a non-rotating two-dimensional gravity current, billows grow beneath the current 
a short distance behind the leading edge of the nose, dissipating energy and causing 
mixing between the two fluids. There appears to be no permanent and stable flow 
near the nose, since new billows periodically appear, break up the head of the current 
and cause rapid oscillations of the nose velocity. For large Reynolds numbers the 
billow dimensions and growth times are identical to  those measured for currents in 
a nonrotating system, with billow frequencies as large as 20 times the rotation 
frequency 52/2n being measured in some runs. We conclude that the instability is of 
the Kelvin-Helmholtz type and is little influenced by the background rotation, 
though of course the width of the basic flow a t  the nose remains strongly controlled 
by rotation. The resulting three-dimensional turbulence is characterized initially by 
large Rossby numbers (the dominate length scaling with current depth) but decays 
with distance behind the nose as billows are left behind on the training current. Eddies 
with larger scales reach small Rossby numbers and become strongly influenced by 
the background rotation, which causes more rapid dissipation of the horizontal 
components of vorticity and a corresponding two-dimensionalization of the flow field. 
The predominantly horizontal eddy motions may therefore scale with the current 
width, which is the largest scale present, but we cannot be certain of this as the 
laboratory experiments were necessarily conducted with comparable current depths 
and widths. The upstream eddies are found to  be accompanied by cyclonic vortices 
that penetrate many current depths into the lower layer near the sidewall. Vertical 
mixing across the density interface also appears to be more vigorous than in the 
non-rotating case and is probably assisted by vertical (axial) flow within the vortices 
in the lower layer (see 59.2). 

The billows and eddies in the boundary current also cause horizontal spreading of 
the buoyant fluid away from the wall. However, this spreading is opposed by Coriolis 
forces associated with the mean streamwise velocity of the eddies. Measurements of 
the velocity profiles upstream and concomitant measurements of the total width of 
the dyed upper-layer fluid indicate that the outer edge of the dye is the best definition 
of the upstream width. This width increases significantly with distance behind the 
nose, from 0.6 local deformation radii a t  the head to approximately one initial 
deformation radius R, = (g’H,)i/f a t  a distance 10R, upstream. This suggests that 
Stern’s (1980) limiting bore solution is realized near the nose, while other factors 
associated with the turbulent two-layer flow broaden the upstream flow. 

Measurements of the position of the nose as a function of time show that, after 
a short initial period of acceleration, the nose velocity uN decreases with time in a 
way that in every run is well described by an exponential (after smoothing the 
small-amplitude oscillations). I n  some cases the velocity falls to less than 20 yo of its 
initial value before the nose reaches the end of the channel. Though the depth of the 
current could not be measured as accurately, it too decreases with time and the local 
Reynolds number sometimes becomes so small that  complete stagnation is avoided 
by an adjustment to  the viscous motion of a thin wedge. When dissipation due to 
Ekman friction is small, the dimensional timescale T / f  for the decay of the nose 
velocity depends only upon the rotation rate 52 and a Froude number 
Fr = fAi/(g’H,)a that  describes the flow leaving the lock. Thus with a deep lower layer 
( D / h  k 10) we find 7 M 25Fd and the corresponding distance to which the nose could 
travel a t  t + co is xM M 22(R, A,)i. An additional dependence upon the Ekman number 
occurs when v / f H i  > lop3, as the vorticity of the mean flow is then dissipated by 
Ekman boundary layers. 
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We have proposed a theoretical model for the flow in which the propagation of the 
nose is governed by the same inertia-buoyancy balance that determines the speed 
of the nose of a gravity current in a nonrotating system. In  the rotating case, however, 
an exponential decay of the flow results from the transfer of momentum to the lower 
layer by inertial waves and associated columnar vortices. These exert a total drag 
on the upstream flow that scales with the Coriolis force fti, where ti is a mean 
downstream velocity. Vortices and wave motions in the deep lower layer were 
observed and a predicted increase of the decay time with decreasing depth of the lower 
layer was verified by experiments with intrusions over a shallow fluid. However, 
further work is needed to quantify the dependence upon fluid depth. The influence 
of mixing across the density interface has not been taken into account as density 
differences for these experiments were necessarily small and measurement of further 
dilutions as the current propagates down the channel were impossible. 

The possible implications of the exponential decay for ocean currents are best 
demonstrated by a simple example. A ‘small’ deformation radius R, x 10 km and 
a small horizontal dimension of just Ai x lo2 km lead to a limiting travel distance 
xM x lo3 km (from (4)), and we therefore expect only small variations of velocity for 
intermittent currents of the scale of large naturally occurring boundary currents 
before they cross an ocean basin or are strongly influenced by surface heat transfer, 
large-scale circulations and the variation of the Coriolis parameter. Nevertheless, as 
discussed below, such intermittent boundary currents will induce waves, vortices and 
a mean motion in the environmental fluid. Furthermore, the mean flow close to the 
nose will also be ageostrophic and this implies that calculations of geostrophic 
velocities from observed isopycnal slopes will overestimate the mass flux. 

9.2. Turbulence structure and its coupling with the lower layer 

The structure of the two-layer flow and the origin of the observed cyclonic vortices 
a t  the wall in the lower layer can be viewed in terms of the transition from 
three-dimensional to quasi-two-dimensional turbulence in a rotating system. Experi- 
ments with the production of turbulence by an oscillating grid in a rotating container 
(Dickinson & Long 1983; Hopfinger, Browand & Gagne 1982; Hopfinger, Griffiths 
& Mory 1983) indicate that a sharp transition occurs between a region of three- 
dimensional turbulence near the grid and a deep region of rotationally dominated 
and quasi-two-dimensional turbulence further away from the energy source. Transition 
is characterized by a local Rossby number u’ll‘f x 0.2, where u’ and I‘ are the local 
turbulence velocity and lengthscale respectively. This Rossby-number criterion 
corresponds to a forcing frequency u’/1’ (by three-dimensional eddies) for which 
inertial wave group velocities are predominantly in the direction of the rotation axis. 
It is also found that vortices aligned with the rotation axis and extending throughout 
the fluid depth D form in a time of order D(QZ)-l after the grid is started from rest. 
This is just the travel time for low-frequency inertial waves. If forcing is neither too 
strong nor too weak for a given rotation rate 0, the cyclonic vorticity becomes 
concentrated into very intense cyclones whose relative vorticity can exceed 52 by one 
to two orders of magnitude (Hopfinger et al. 1982). 

Returning now to the gravity current, it  is plausible that relatively intense cyclonic 
vortices are generated in the lower layer by the turbulent field in the current. The 
observed small cyclonic vortices near the wall (figure 18c) seem to support this 
conjecture. Very close to the nose a local Rossby number based on a turbulent eddy 
velocity u’ x 0 . 3 ~ ~  and Iengthscale I’ < h, is much greater than 0.2. However, some 
distance behind the nose the turbulent velocity decreases to say u’ < O.lu,, so that 
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scales of 1' w 1, give a Rossby number u'/l'f< 0.2. Turbulent eddies of this scale 
(and perhaps smaller) will therefore degenerate into vertical columnar (anticyclonic) 
structures which penetrate at the inertial wave speed deep into the lower layer (see 
for instance figures 2 ( d )  and 3). These anticyclonic structures contain diverging flow 
and should therefore be rather diffuse as in the oscillating-grid experiments. However, 
between the anticyclones and near the wall there may be regions of converging flow, 
and hence vorticity concentration. The cyclonic vortices in our experiments first 
reach the observation depth (about 8 cm below the interface) at a distance of about 
40 cm (or five head widths) upstream of the nose. This corresponds to a propagation 
speed for the columnar structures which is consistent with the inertial wave speed 
1,Q. Thus, while billows tend to lead directly to visible cyclonic eddies in the upper 
layer a t  the outer edge of the flow, vorticity concentration may play a role in 
producing cyclones in the lower layer near the wall. Further work is needed to verify 
this hypothesis and to establish the horizontal scale of the vortices in terms of the 
current depth and width. 

9.3. The appearance of baroclinic waves 

Measurements reported in this paper were taken only at times before rotationally 
dominated waves had grown to visible amplitudes a t  any point on the current. Such 
waves grow first on the current just outside the lock and are similar to the baroclinic 
waves studied by Griffiths & Linden (1981, 1982) in experiments with uniform 
axisymmetric boundary currents. Unlike the Kelvin-Helmholtz billows near the nose 
of the intrusion, these waves break the constraint of rotation, and a t  large amplitude 
cause a large horizontal spreading of the buoyant fluid. However, they require times 
of the order of 10 rotation periods ( t  > lO2ff ' )  to grow to a visible amplitude. I n  this 
time the nose of the current is able to travel a very large distance given by (2), or 
more readily by x z 1O2f1(g'H0)~ z 1O2R0. Moreover, the exponential decay of the 
flow makes it unlikely that the influence of the large-amplitude waves can overtake 
the nose before it approaches stagnation. I n  the slowly evolving stage near stagnation, 
however, the waves do have time to grow along the entire length of the flow. This 
can be seen occurring in experiments with slow continuous point sources of buoyant 
fluid (Stern 1980; Griffiths & Linden 1981), where the low-Reynolds number flow 
develops rotationally dominated instabilities close to the nose. We conclude that 
rotationally dominated instabilities do not affect high-Reynolds-number flow in 
transient gravity currents for a very large distance behind the nose. 

This work was supported by the Centre National d'Exploitation des OcBans under 
contract' no. 8212653 and carried out a t  the Institut de MBcanique de Grenoble. 
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